ATOMIC ENERGY CENTRAL SCHOOL

Rational Numbers and Polynomials

Class: 9 Mathematics

Time: 3H Chapter: 1, 2

Section - A

→ Answer the following questions. (Each carry 1 mark)

[25]

- **1.** Classify given number as rational or irrational with justification: $(1+\sqrt{5})-(4+\sqrt{5})$
- **2.** Simplify this: $(\sqrt{5} \sqrt{2})(\sqrt{5} + \sqrt{2})$
- 3. Simplify this: $(\sqrt{11} \sqrt{7})(\sqrt{11} + \sqrt{7})$
- **4.** You know that $\frac{1}{7} = 0.142857$. Can you predict what the decimal expansions of $\frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7}$ are, without actually doing the long division? If so, how?
- **5.** Is this number rational or irrational: 2π
- **6.** Is this number rational or irrational: $\frac{1}{\sqrt{2}}$
- **7.** Is this number rational or irrational: $(3 + \sqrt{23}) \sqrt{23}$
- **8.** π is defined as the ratio of the circumference (say c) of a circle to its diameter (say d). That is, $\pi = \frac{c}{d}$. This seems to contradict the fact that π is irrational. How will you resolve this contradiction?
- **9.** Divide $8\sqrt{15}$ by $2\sqrt{3}$.
- 10. Insert a rational number and an irrational number between the following: 6.375289 and 6.375738
- **11.** Rationalise the denominators: $\frac{1}{\sqrt{5} + \sqrt{2}}$
- **12.** Insert a rational number and an irrational number between the following: 0 and 0.1
- 13. Let x be rational and y be irrational. Is xy necessarily irrational? Justify your answer by an example.
- **14.** Classify given number as rational or irrational with justification: 1.010010001...
- **15.** Is zero a rational number? Can you write it in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$?
- **16.** Write three numbers whose decimal expansion are non-terminating nonrecurring.
- 17. Express in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$: 0.2
- **18.** Classify given number as rational or irrational with justification: $-\sqrt{0.4}$

- **19.** Verify that the following are zeroes of the polynomial: p(x) = 3x + 1, $x = -\begin{pmatrix} 1 \\ 3 \end{pmatrix}$
- **20.** Is this number rational or irrational: $\sqrt{225}$
- **21.** Is this number rational or irrational: 7.478478.....
- **22.** Simplify this: $(3+\sqrt{3})(3-\sqrt{3})$
- **23.** Is this number rational or irrational: $2 \sqrt{5}$
- **24.** Classify given number as rational or irrational with justification: $\frac{\sqrt{12}}{\sqrt{75}}$
- 25. Give one example each of a binomial of degree 35, and of a monomial of degree 100.

Section - B

→ Answer the following questions. (Each carry 2 marks)

[20]

26. Express 0.99999... in the form
$$\frac{p}{a}$$
.

- **27.** Find the following products using appropriate identities: (x+3)(x+3)
- **28.** Factorise $6x^2 + 17x + 5$ by splitting the middle term, and by using the Factor Theorem.
- **29.** Find the value of k, if x-1 is a factor of $4x^3 + 3x^2 4x + k$.
- **30.** Find p(0), p(1) and p(2) for the following polynomial: $p(t) = 2 + t + 2t^2 t^3$
- **31.** Use suitable identities to find products: (3x+4)(3x-5)
- **32.** Find p(0), p(1) and p(2) for the following polynomial: $p(y) = y^2 y + 1$
- **33.** Write the coefficient of x^2 in each of the following:

(i)
$$3x-5$$
 (ii) $(2x-5)(2x^2-3x+1)$

- **34.** Rationalise the denominator of $\frac{1}{\sqrt{2}}$.
- **35.** Write $(3a+4b+5c)^2$ in expanded form.

Section - C

→ Answer the following questions. (Each carry 3 marks)

[30]

36. If
$$a = \frac{3+\sqrt{5}}{2}$$
, then find the value of $a^2 + \frac{1}{a^2}$.

HAPPY LEARNING

37. Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer.

(i)
$$4x^2 - 3x + 7$$
 (ii) $y^2 + \sqrt{2}$ (iii) $3\sqrt{t} + t\sqrt{2}$

- **38.** If $p(x) = x^2 4x + 3$, evaluate: $p(2) p(-1) + p(\frac{1}{2})$
- **39.** Find the decimal expansions of $\frac{10}{3}$, $\frac{7}{8}$ and $\frac{1}{7}$.
- **40.** Show that $0.2353535...=0.2\overline{35}$ can be expressed in the form . where p and q are integers and $q \neq 0$.
- **41.** Factorise: $2y^3 + y^2 2y 1$
- **42.** Find p(0),p(1),p(-2) for the polynomial: p(y) = (y+2)(y-2)
- **43.** Write the following in decimal form and say what kind of decimal expansion each has:

(i)
$$\frac{3}{13}$$
 (ii) $\frac{2}{11}$ (iii) $\frac{329}{400}$

- **44.** If the polynomials $az^3 + 4z^2 + 3z 4$ and $z^3 4z + a$ leave the same remainder when divided by z 3, find the value of a.
- **45.** Express 0.6 + 0.7 + 0.47 in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$.

Section - D

- → Answer the following questions. (Each carry 5 marks)
- **46.** The polynomial $p(x) = x^4 2x^3 + 3x^2 ax + 3a 7$ when divided by x + 1 leaves the remainder 19. Find the values of a. Also find the remainder when p(x) is divided by x + 2.
- **47.** Classify the following as a constant, linear, quadratic and cubic

(i)
$$2 - x^2 + x^3$$
 (ii) $3x^3$ (iii) $5t - \sqrt{7}$ (iv) $4 - 5y^2$ (v) 3

48. Simplify:
$$\frac{7\sqrt{3}}{\sqrt{10} + \sqrt{3}} - \frac{2\sqrt{5}}{\sqrt{6} + \sqrt{5}} - \frac{3\sqrt{2}}{\sqrt{15} + 3\sqrt{2}}$$

49. If
$$\sqrt{2} = 1.414$$
, $\sqrt{3} = 1.732$, then find the value of $\frac{4}{3\sqrt{3} - 2\sqrt{2}} + \frac{3}{3\sqrt{3} + 2\sqrt{2}}$.

- **50.** For the polynomial $\frac{x^3 + 2x + 1}{5} \frac{7}{2}x^2 x^6$, write
 - (i) The degree of the polynomial (ii) The coefficient of x^3 (iii) The coefficient of x^6 (iv) The constant term

[25]